LES réalisations de la » ligne bleue »
Le savoir-faire radioamateur

Antenne beam
2 éléments
multibande de 10 à 30 MHz

F6BCU Bernard Mourot

Présentation de l'antenne
La description de l'antenne se compose de quatre parties bien précises qui feront chaque fois l'objet d'un commentaire technique et pratique. Ce sont :
* Le boom et le système de fixation et d'isolation des brins d'antenne.
* Les brins de l'antenne.
* La ligne d'inversion de phase et ses fixations.
* La ligne de transmission.

Ces différentes parties seront développées et commentées dans les lignes qui vont suivre à l'aide de figures détaillées de plan et dimensions et de photographies récentes.

Faire preuve de pragmatisme
Le radioamateur adopte le trafic décalé trame en fin de siècle se poser quelques questions sur son identité et sa raison d'être ? Pratiquement que lui reste-t-il à découvrir, encore mieux à construire ? Tout ce qu'il désire n'est-il pas disponible dans les catalogues ?
La station radioamateur (émetteur-récepteur, antenne, accessoires) n'est-elle pas fournie clé en main. Il suffit de lire les publicités prometteuses de certains annonceurs, qui vous proposent le seul, l'unique, le vrai matériel normalisé réglementaire capable de concrétiser d'hypothétiques liaisons lointaines, affirmant ainsi une triste image du radioamateur simple consommateur de radio. Lequel moyennant une redevance, pour accéder au droit d'émettre, possède désormais un titre virtuel, celui de : RADIOAMATEUR.
Nous ne manquerons pas d'évoquer en passant une certaine histoire, celle de la Citizen Band, qui a déchaîné tant de passions par médias interposés, jusqu'à sa confusion de l'attribution de la véritable qualité du titre de radioamateur. Tout cela commence il y a plus de vingt ans. Certains voulurent imiter les vrais radioamateurs, faire du DX ou de la « longue distance » gratuitement, sans licence d'émission, en toute illégalité. Grands consommateurs de « TX », du tout fait clé en main, combien restent-ils aujourd'hui ? « L'ombre d’un souffle », ils ont quasiment disparu, seuls subsistent quelques rescapés.
voles de la formation dans les clubs, desquels prétendre qu'ils ne sont pas les vrais gardiens de l'esprit radioamateur serait une absurdité. Nous leur dédions cette série d'articles consacrés à une antenne directive construite par un amateur pour les radioamateurs.

Un peu de théorie

L'antenne Lévy ou « Center Feed » offre la propriété de s'accorder sur toutes les bandes et conserve une certaine efficacité dans son rayonnement, si toutefois, la partie rayonnante n'est pas inférieure au 1/4 de la fréquence la plus basse à exploiter. La particularité de cette antenne est son fonctionnement spécifique, basé sur la théorie des ondes à résonances stationnaires. Actuellement l'ouvrage intitulé « Radioamateur Handbook » fait autorité dans les sphères radioamateurs et nous le citons en référence dans nos sources bibliographiques. Son édition 1988 remet en évidence l'antenne bien connue sous le nom de W8JK M. Kraus. Composée d'origine de deux brins rayonnants 1/2 onde travaillant en opposition de phase dont l'espacement, s'il n'est critique se caractérise par une dimension optimum, compatible avec une pointe dans le gain mesuré. L'observation de la courbe spécifique, pour une longueur de 1/8 d'onde située sous le seuil du maximum de gain.

Notre choix est centré sur la bande des 14 MHz la longueur du boom est définie à 2,50 mètres. Théoriquement l'antenne 1/2 onde ou dipôle possède un gain de 2,2 dB par rapport à l'antenne isotrope (de rayonnement sphérique), une précision importante, c'est le gain de chaque faisceau directif, symétrique pris individuellement, celui non utilisé étant considéré comme inactif dans la mesure.

Le gain d'un faisceau d'ondes d'une antenne W8JK composée de 2 dipôles distants de 1/8 de longueur d'onde, avoisine les 4,3 dB ce qui est remarquable. L'angle de départ DX est compris entre 20° et 30° dans les plus mauvaises conditions, ce qui néanmoins laisse supposer que le fonctionnement en DX est correct (la pratique ne fera que confirmer la théorie, les résultats sont remarquables sur le « long pass et short pass » étant bidirectionnellement, « ça passera toujours du meilleur côté ! »).

Sur les fréquences supérieures à 14 MHz

Particularité sur fréquence harmonique 2 (double de la fréquence de base), cette antenne possède le privilège rare de mieux fonctionner encore, le gain s'élève à 6 dB, et la directivité augmente.

Sur 28 MHz ces performances sont comparables à une Yagi 3 éléments monobande bien construite ; autre avantage, quand ça passe avec une propagation « Nord/Sud » par exemple, l'action bidirectionnelle facilite les liaisons sur cette bande, où le QRM est rare.

L'effet directif d'une antenne augmenté d'un fort rapport avant arrière important n'est plus un critère impératif pour établir des liaisons exceptionnelles en DX.

Un exemple pratique

Nous vous citons pour l'exemple une réalisation pratique de la W8JK, appliquant la théorie des antennes colinéaires travaillant en opposition de phase cf (Handbook ARRL 1992). Il s'agit de la « Double Zepp » construite par K7KG, décrite dans QST en 1987 et 1988. Si l'espacement des brins rayonnants est invariablement fixé à 1/8 de longueur d'onde ou lambda, les dimensions des brins rayonnants ne sont plus d'une demi lambda, mais allongés à 2 fois 0,64 lambda. L'antenne décrite fonctionne sur 24 MHz. Sans trop s'approfondir sur les détails, le gain est supérieur à +3 à 4 dB par rapport à la W8JK de référence. (Deux brins de 1/2 onde.) Physiquement cette antenne sur 24 MHz fait 13 mètres de largeur, l'espacement entre les brins 1,2 mètre. Le gain par faisceau est de +8 dB par rapport au dipôle, à entendre les confirmations des radioamateurs américains utilisateurs de la double Zepp, le gain, les performances sont équivalentes à une Yagi 4 éléments monobande.

Figure 1

Antenne multibandes type W8JK.

Figure 2

Brin d'antenne.

- 1. Élément en aluminium long. 2 m Ø 3 cm.
- 2. Bague fendue, Ø à déterminer au montage, long. 15 cm.
- 3. Élément de 2 m de long en aluminium.
- 4. Élément d'un Ø 1,4 cm en alu, prolongé de 40 cm d'aluminium plein Ø 5 mm (utilisé pour les brins d'antennes VHF) vendu en élément de 2 m.

Radio REF | Novembre 1998
L = 143L. La fréquence maximum de travail de notre antenne est proche de 39 MHz, malgré un espace de 1/3 de lambda qui laisse encore présommer d'un gain de 7 dB minimum par rapport au dipôle de référence.

Retour sur la première version de l'antenne

Un précédent article paru dans la revue en janvier 1990 décrit une antenne similaire, plus petite en dimensions et plus légère, nous nous étonnons, à l'époque, inspirés d'une réalisation déjà tirée du Handbook, mais avec les conseils de Darro F6CST (+ « silent key ») qui avait modifié sa FBDR dont nous reprenons pour en faire une W8JK. Très critique dans ses affirmations, l'antenne FBDR (version commerciale décamétrique de la H89CV) conçue pour 14 MHz en version monobande, ne lui avait pas donné de résultats supérieurs à la W8JK. Autre particularité de notre antenne plus petite en dimensions, largeur de 7,50 mètres, espacement de 1,8 mètre entre brins spécialement centrée sur 18 MHz, nous a permis l'écoute du 50 MHz ouvert depuis peu à l'époque à certaines régions privilégiées de France. Dans un prochain chapitre nous décrirons la construction pratique et mécanique de cette antenne. Afin d'illustrer ce premier chapitre, vous avez en communication les photos 3 et 4 qui seront traitées au suivant.

L'antenne est située au centre ville de Saint-Dié des Vosges sur un immeuble à 17 mètres de hauteur.

Considérations générales sur l'antenne

Nous avons eu possibilité après quelques années d'installation, d'apprécier l'état géné-
Boom et fixation des brins.

FIGURE 4

- Cédez de soudure à l'arc.
- Passage Ø 5 mm pour boulon Ø 5 mm INOX.
- Passage Ø 5 mm pour boulon Ø 5 mm INOX.
- Barre de fixation carré 6 x 6 inox soudée sur h et i.
- Plaque en inox 40 x 20 cm épaisseur 4 mm.
- Plaque en inox 40 x 20 cm épaisseur 4 mm.
- 2 trous Ø 4 au travers de la plaque et du boom + 2 boulons Ø 4 x 100 pour le plissement.
- Boom carré inox 6 x 6 cm, longueur 2,80 m.

Nous évoquerons une maxime propre à HB9CV. M. Rudolph Baugartner : « Les radioamateurs suisses, s’ils construisent c’est pour 100 ans ! ». Sans prendre à la lettre, les termes de cette maxime, il faudra bien concevoir que pour durer et résister, il faut choisir les meilleurs matériaux, meilleurs ne veut pas dire les plus onéreux (visserie marine en inox, ou en laiton).

Le boom et le système de fixation et d’isolation des brins d’antenne

Le boom

Photos 3 et 4 et figure 4. Nous avons choisi comme matériaux pour élaborer le boom de l’antenne, un profilé carré en inox de section 6 x 6 cm qui est creux et dont l’épaisseur intérieure est d’environ 3 mm. La longueur totale du boom est de 2,80 m.

Remarque : nous attirons l’attention du lecteur sur le fait que volontairement, certains détails sont différents sur les photos, comparativement aux plans dessinés (modifications mineures). Nous nous sommes efforcés d’introduire un critère de reproductibilité avec les matériaux du commerce, et ainsi se main-
tenir à une construction compatible par sa simplicité avec les moyens des radioamateurs. Revenons à la figure 4, les différentes parties et points caractéristiques sont numérotés de 1 à 8. Il n'est pas nécessaire d'entamer dans le détail de la construction, la figure 4 est assez détaillée. Mais nous rappellerons un point précis sur le support des brins d'antenne composé des deux plaques de 40 x 20 cm, serrées sur le boom. Elles seront percées avec des trous de diamètre 4 mm (n° 7) pour le piétement au montage, après serrage et centrage, pour une parfaite perpendiculalité par rapport au boom.

Cette pièce demande une certaine attention dans sa conception, mais n'est pas exhausti ve dans son concept. Certains pourront la simplifier, ou s'inspirer de notre article de janvier 1990, dans Radio-REF, sur la première version de cette antenne.

Isolation et fixation du brin d'antenne

1) **Brins d'antenne** : Concernant les brins d'antenne vous avez tous les détails (figure 2) et pour d'autres complémentaires, voir le paragraphe suivant.

2) **Isolation des brins d'antenne** (figure 3) : "Nous avons choisi pour isoler le brin d'antenne du PVC de couleur noire, tuyau d'extérieur pour conduites d'eau. C'est le seul qui résiste au gel, à diverses intempéries. Celui de couleur grise, sera réservé pour l'usage domestique d'intérieur, il est déconseillé, devenant cassant à l'usure à l'extérieur. Comme partie isolante des brins et pour les maintenir sur leur support, deux demi-coquilles de PVC (tronçon de tuyau sectionné en deux morceaux) serviront d'isolant et de liaison mécanique :

 * Fonction d'isolation X.
 * Fonction de lien mécanique Y.

L'ajustage et le positionnement sont à exécuter au montage.

Notre construction il sera possible de mettre plusieurs épaisseurs de PVC pour que les fonctions X et Y soient maintenues correctement après serrage des boulons (4) pour obtenir la rigidité mécanique requise.

Remarque : pour réduire les perspectives un autre système de fixation des brins avec des brides de fixation en 1/2 rond et 2 coquilles de PVC (suivant le principe général de fixation d'une antenne à un mât).

Pour conclure : l'isolation et la fixation des brins d'antenne sont les deux phases principales de la construction. Bien conçues, vous posséderez un ensemble parfait qui vaut son prix.

Les brins d'antenne

Figure 2. Les diamètres des tubes d'aluminium sélectionnés vous paraîtront peut-être faibles, comparés aux « monstres du commerce ». Mais soyez rassurés, notre expérience de cette antenne installée depuis plusieurs années, confirme largement le bon choix.
La ligne de transmission de la HF

Depuis quelques années, venant des USA le « twin-lead » à 600 ohms « amphélion » est disponible chez tous les spécialistes revendeurs de matériel pour radioamateurs. Son coût reste raisonnable. Celui que nous possédons vient du salon d'Aix en Provence 1994.

Présenté sous la forme d'un câble de conducteurs plat d'environ 4 cm de largeur de couleur brun foncé (une échelle). Les deux conducteurs métalliques sont monobris d'un diamètre de 8/10 de mm, très résistants sous la coupe d'une pince d'électricien, très dures, d'une belle couleur cuivre, se soutiennent facilement. Renseignement pris, ces conducteurs seraient composés de bronze au béryllium.

Cette dureté spécifique confère un avantage certain au « twin-lead », la rigidité et un effet de ressort exploité avec succès permet la comparaison avec du câble coaxial.

En effet, pour faire tourner un aérien, une certaine boucle de rotation autour du moteur ou du mat est nécessaire au niveau de la ligne d'ajustement. Si celle-ci ne pose aucune contrainte avec du câble type KX 6/11 mm ou autres similaires, l'ancien câble plat bifilaire 300 à 400 ohms posait un problème pour la rotation de l'aérien (ligne haute impédance venant têter le moteur ou le mat, phénomène désagréant systématiquement l'aérien par effet capacitif de masse environnante ; perturbant les transmissions et obligeant à des contraintes souvent insoutenables).

La solution

Elle se trouve dans le nouveau câble « amphélion ». Son effet de ressort est remarquable et il vous permettra de faire tourner votre antenne. Mais attention, cette qualité est dévolue uniquement au monobris : celui à multibrins est trop souple (sous la même présentation les deux modèles sont disponibles).

Remarque : L'antenne étant naturellement bidirectionnelle dans son rayonnement HF, pour une couverture totale de 360°, elle ne nécessite qu'une demi rotation de 180°.

D'autres explications restent nécessaires pour bien comprendre le fonctionnement de la ligne de transmission parcoure par les ondes stationnaires. Il restera à fixer sa longueur et sa température jusqu'à l'émetteur, étudier le système de couplage nécessaire pour optimiser les impédances rencontrées, etc.

Tout ceci sera développé et expliqué dans un troisième chapitre. Vous y trouverez aussi la description et les commentaires sur quelques essais réalisés avec cette antenne devenue une HHBCV décramématique, moyennant quelques petites modifications mécaniques, les reflets et considérations à tirer de l'ajustement d'une antenne HHBCV en ondes stationnaires.

Fonctionnement de la ligne de transmission

1) La différence entre ondes stationnaires
et ondes progressives : Nous rappelons que la ligne de transmission résonne en ondes stationnaires, qu'elle forme avec l'antenne un ensemble indivisible accordé sur la fréquence de travail. Contrairement aux antennes alimentées en ondes progressives, où théoriquement l'impédance est maintenue constante tout au long du câble coaxial, avec une impédance typique de 50 ohms, il est toujours question d'une partie de l'antenne et d'autre partie de la ligne de transmission de la distinction entre antenne et ligne est confirmée. La ligne de transmission de l'antenne Lévy composée de deux conducteurs espacés de quelques centimètres (4 à 10 cm) véhicule les ondes en opposition qui s'annulent sur la ligne de transmission. Le rayonnement est théoriquement nul (mais détectable en pratique). La ligne s'ouvrant elle devient une antenne qui rayonne pleinement la haute fréquence.
Exemple pratique : admissons que l'impédance typique à l'ouverture de la ligne soit 50 ohms, ceci sur une fréquence connue, sans nous tromper notre antenne sera 1/2 onde ou 3/2 onde, etc., et se comportera exactement comme la même antenne alimentée en ondes progressives avec un diagramme de rayonnement identique.
2) La ligne de transmission et la tradition radioamateur : Il est exact que des longueurs définies de ligne de transmission (échelle à grappe) ont été préconisées par certains auteurs d'articles traitant des antennes Lévy, également dans certains ouvrages de vulgarisation radio bien connus du monde radioamateur.
Nous prendrons en référence ce que nous écrivions en 1990 dans la revue concernant cette antenne : « Depuis une vingtaine d'années que nous travaillons sur les antennes Lévy, nous avons toujours construit des échelles à grappe ou utilisait du « twin-lead » d'une longueur quelconque. Cette règle étant confirmée par l'expérimentation ».

Conclusion
Entre votre antenne et la boîte de couplage, vous pouvez disposer d'une longueur quelconque de « twin-lead » compatible avec vos besoins.

La boîte de couplage (coulpeur d'antenne)
Il existe toujours la solution, pour faire résonner une antenne du type Lévy, d'utiliser les traditionnels coupleurs Mac Coy-USA ou FILG. Nous aurons l'occasion d'y revenir en fin de chapitre.
1) Boîte de couplage sortie symétrique : Certaines fabrications commerciales de coupleurs sont pourvues de sorties symétriques pour antenne Lévy ou « center-fed ». Un balun coin courant à l'enfer est incorporé par le constructeur, mais il faut bien s'assurer de l'existence d'un tore et d'un balun de rapport 4/1 en s'inscrivant avec la notice technique d'origine. Tout autre système pseudo-symétrique est déconsidéré, l'antenne fonctionnera mal, le rayonnement sera asymétrique (attention au GMB TV) et au mauvais diagramme de rayonnement.
Pour ce type de couplage à balun symétrique, aucune question à se poser. Il suffit de brancher le « twin-lead » aux bornes spécifiées, faire la procédure d'accord pour un ROS minimum (volton de 1) sur chaque bande. A priori tout semble correct, bon trafic !
2) Boîte de couplage type L ou 70 sorties asymétrique : Ce type de couplage est de loin le plus répandu et le plus populaire. Certains sont de réglage manuel, d'autres automatiques, même intégrés dans l'émetteur-récepteur. Par contre leur plage d'accord est relativement étroite.
Pour remédier à cette étroitesse, augmenter la plage d'accord, et bénéficier d'une sortie symétrique, un balun symétriseur « home made » est construit autour d'un tore 4G5 vis-

Remarque : En règle générale, l'accord avec le ballun 4/1 s'avère le plus courant (figure 9). L'accord parfait se confirme toujours au minimum de ROS, que l'appareil de mesure soit incorporé au couplage ou extérieur (figure 7). Dans certains cas d'accord spécifique, de situations particulières, quelques radioamateurs nous ont signalé que le couplage 1/1 est préférable, accord plus facile (figure 8), mais ces cas restent rares.

3) Le couplage FILG : L'auteur de ce couplage, dont nous possédons un modèle fabriqué par un radioamateur, a le mérite d'avoir simplifié le système de couplage inhérent aux antennes Lévy, selon le principe d'une bobine unique accordée, cumulant les fonctions d'atténuateur/transformateur d'impédance. Seul inconvénient, ce couplage est encombrant, les bobines sont enroulées sur air et nécessitent une fabrication spéciale qui, à elle seule, est une œuvre d'artiste « l'art de l'ODM ». C'est ce couplage qui nous rappelle nos premiers QSO DX avec l'antenne « Maria Malucca » et 1973. Nous vous laissons le soin de vous reporter aux descriptions et commentaires de l'auteur FILG, ou à d'autres descriptions similaires qui ne manquent pas dans la revue.

Conclusion
Des essais que nous avons effectués, avec de multiples correspondances nationaux et DX, avec les coupleurs A, B, C, du chapitre précédent, lorsque l'accord est correct les performances de l'antenne, sont identiques. Ne rétablissant qu'en ondes stationnaires vous ne risquez pas de fonctionner en ondes progressives, la conception antenne + couplage écartent cet aléa, l'accord est impossible. D'ailleurs, il existe un test simple pour visualiser l'onde stationnaire, si vous posez une bobine de Hertz (ampoule de lampe de poche sous 4,5 volts dont les bornes du culot sont soucoupées sur une rayure de fil de cuivre de diamètre 5/10 de mm de 4 à 10 cm) que vous déplacez cette bobine de Hertz parallèlement à la ligne de transmission, vous mettrez en évidence des zones lumineuses très courtes passant par un maximum de luminosité et l'extinction progressive de la lumière. Vous venez de passer sur les ventres de tension et de courant :
- Ventre de tension = zone de haute impédance, centaines à milliers d'ohms.
- Ventre de courant = zone de basse impédance, 50 ohms et moins.
En dehors de ces zones lumineuses (Il faut au moins 50 watts HF dédiées en continu la lampe est quasiment étincelante, éventuellement un léger rougissement. Ceci étant la preuve de la condition de fonctionnement en résonance d'ondes stationnaires. L'attaque et le rayonnement étant symétriques, le GMB TV est inexistant.
Nous avons modifié cette antenne pour en faire une HBBV alimentée en ondes stationnaires. Ce sera la suite de cet article.
Les réalisations de la » ligne bleue »

Le savoir-faire radioamateur

Modification de l’antenne bidirectionnelle W8JK en monobande directionnelle à réflecteur piloté

F6BGO Bernard Mourot

Dans l’article paru dans Radio-REF, en novembre 1998, sous le nom de « Beam 2 éléments multibandes », nous avons exploité les caractéristiques de deux dipôles en opposition de phase selon la théorie W8JK, permettant l’accession sous certaines conditions à la fonction multibandes, avec un effet directif prononcé bidirectionnel. Le fruit de quelques modifications transforme cette antenne en une « beam » à deux éléments, très directive, mais spécifiquement monobande, avec un rapport avant-arrière important, réel et mesurable.

Un peu de théorie

1. Si nous considérons les 2 brins dipôles (1/2 onde) rayonnants, formant la « beam » deux éléments décrite, dont la fonction est d’être multibande, il faudra bien convenir que cette fonction n’est possible qu’en ondes stationnaires. D’ailleurs nous ne retiendrons pas sur cette théorie qui est largement expliquée dans l’ouvrage de Rothmann en Allemagne ou dans les différentes éditions du Radioamateur Handbook ou l’antenne de la RSGB. Par contre, rien n’empêche d’alimentner ces deux dipôles en ondes progressives. Les applications sont nombreuses :
 - Antennes « yagi » en rapports.
 - Groupement de 2 ou 4 antennes « yagis » pour contacter la Lune (FYSV et ses « yagis » par exemple).
 - Et sur d’autres fréquences supérieures à 432 ou à 1296 MHz.

2. Tout cela fonctionne très bien, mais dans la seule version monobande, bien qu’il serait envisageable (voyez quelques adaptations supplémentaires du niveau des impédances) d’avoir une fonction en 3/2 onde. Méthode de travail concretisée par les pionniers du 144 MHz pour leurs premiers essais sur 432 MHz (nos premières intrusions avec F6BGO alors F1000 dans les années 80).

3. Nous retiendrons des lignes précédentes que rien ne s’oppose à alimenter en ondes progressives deux dipôles en phase, ou en opposition de phase, ou complémentairement même déphasés en avance ou en retard (aux de la polarisation circulaire droite ou gauche).

Ce qui nous amène indubitablement à redécouvrir une célèbre antenne décrite dans les années 51 par W8MKP, M. H.J. Gruber, radio-amateur américain très connu à l’époque pour ses études et ses expérimentations sur une antenne directive à 2 éléments (2 dipôles d’identiques longueurs repliées, connue sous le nom de « ZL-spécial » ou double antenne trombone.

La particularité du trombone est son impédance caractéristique de 260 à 300 ohms pour une alimentation en ondes progressives par un câble bifilaire plat dénommé twin lead, de même impédance, avec réinjection sur le réflecteur (2° trombone), à l’aide d’un même câble bifilaire, d’une partie de l’énergie HF rayonnée en pensant bien s’innover la phase d’injection de la HF et en croisant les connexions comme sur la W8JK.

Afin d’illustrer l’importance de cette réalimentation, nous retiendrons les arguments développés par FBDR, M. Guy du Bourg de Bocas, relatifs à cette famille d’aériens, dont il commercialisa ultérieurement un modèle avec succès sous le nom de « Antenne FBDR », dans les années 70.

La particularité de cet aérien réside dans le fait que contrairement à la plupart des antennes dont l’effet directif est obtenu par un élément réflecteur dit « parasite », dans le cas présent, cet élément réflecteur est « piloté » par la même source d’énergie que celle qui alimente l’élément radiateur (dipôle rayonnant) et ceci avec un déphasage convenable.

Ainsi est obtenue une poussée considérable du signal vers l’avant, donnant un gain au moins égal à 15 dB, et de ce fait cet aérien est supérieur à toutes les antennes connues actuellement.

Nous pouvons conclure, sans prendre en considération le gain signalé par FBDR, que réaliser de même le deuxième dipôle est d’une incidence non négligeable.

2. RSGB: Radio Society of Great Britain.

N°710 AVRIL 1999
Nous tenons à ouvrir une parenthèse. (F8DR nous a longuement entretenu, sur l’air en QSO, de ses essais sur son antenne avant de la commercialiser, car nous étions à l’époque pour lui « Le voisin de St-Dié » et où il avait séjourné entre 1914 et 1918 comme officier de transmissions au lieu dit « Etang Filler » à St-Roch sur les hauteurs de St-Dié, non loin de notre QRA. Indiscutablement la ZL spéciale était une nouveauté. Elle fut d’abord construite en fil, tendue entre des piquets ou des pylônes fixes, dans des directions privilégiées sur les bandes basses, car très légère à construire, avec ces 2 trombones encombrants. Mais nous retiendrons l’usage du twin lead pour l’améliorer en ondes progressives.

Évolution de l’antenne
Nous n’arrivons certainement pas à départager lequel des deux radioamateurs F8DR ou HB9CV fit évoluer l’antenne pilotée vers ses performances, sa forme simplifiée actuelle et ses dimensions réglementaires pour les bandes radioamateurs. Mais nous avons retrouvé, datant des années 1989, un article de l’auteur HB9CV paru dans la revue Radio-REF où il écrivait : « L’antenne directive HB9CV joint les avantages électriques de deux éléments directement alimentés aux avantages de l’antenne yagi ».

Les critères de l’antenne

Notre expérience
Figure 1. Ayant à disposition la « beam » type W6KE, moyennant quelques modifications, le bâton rayonnant fut réglé à 9,50 m et l’autre dipôle rallongé à 10,65 m pour faire office de réflecteur. Si nous comparons les dimensions par rapport à la F8DR, ou la HB9CV, elles sont identiques, le boom mesurant aussi 2,65 m. Régions l’accord de l’antenne sur 14 MHz, comme la W6KE, tant s’accorde aux essais. L’antenne apparaît très directive accompagnée d’un rapport avant-arrière supérieur à 20 db, en tout point comparable aux performances de notre HB9CV 144/146 MHz.

Pour répondre à la question : pourquoi cela fonctionne-t-il ? Il semble à priori que l’impédance au centre du dipôle rayonnant est bien de 50 ohms, impédance caractéristique déterminée par les dimensions spécifiques à cette bande de fréquence (14 MHz). En fait l’ensemble rayonnant se comporte comme s’il était alimenté en ondes progressives.

Remplacement du mode ondes progressives par le mode ondes stationnaires
Nous avons retrouvé dans l’édition du Hand-
book 96 (chapitre 20, pages 20-37), cet article de NE2O M. Jay Kolinsky qui, entre sa station et sa « cubical quad » couvrait 4 bandes pour radioamateurs jusqu'à présent, utilisait du câble coaxial de 50 ohms, genre EX4, et se plaignait d'une perte de plus de 3 dB sur 28 MHz. Bien entendu la longueur de câble coaxial excédait 80 m.

Afin de réduire les pertes, il alimenta la « cubical quad » par un bifilaire « amphénol » d'impédance 450 ohms (figure 2); les résultats furent positifs et le ROS égal à 1/1 à l'accord. L'explication est simple, toutes les « loops » du cadre rayonnant sont taillées à la bonne dimension pour avoir en service en ondes progressives environ 50 à 100 ohms sur la bande de travail aux bornes de la « loop » choisie ; impédance spécifique pour obtenir le fonctionnement ad hoc du cadre « loop » sur sa fréquence (au mieux le cadre 28 MHz ne pourra resonner que sur cette bande à l'impédance comprise entre 50 à 100 ohms, idem pour les autres bandes). Les cadres « loop » étant fermés, seule une onde stationnaire d'impédance 50 à 100 ohms pourra s'établir réellement sur la fréquence de travail du cadre correspondant. Dans ces conditions, il est possible de faire fonctionner la « cubical quad » en alimentation par ondes stationnaires, sans pertes, avec un ROS minimal par bande, considérant que l'on est maître de l'accord depuis la station sur une certaine partie de la bande.

Conclusion

Faire fonctionner l'antenne type HB9CV ou F8DR en ondes stationnaires, comme l'antenne « cubical quad » est bien confirmé.

Une idée à creuser

Serait-il possible d'envisager la fabrication d'une antenne HB9CV multibande, alimentée en ondes stationnaires par un unique câble plat « amphénol » de 450 ohms (14, 21, 28 MHz) ou (28, 50, 144 MHz) ? Nous avons personnellement une idée pratique sur la possibilité d'une telle conception d'antenne. F8DR, en avance sur son temps, avait déjà résolu une partie du problème, avec une descente par un câble coaxial unique. En hommage au souvenir de F8DR, un ami, nous publions le schéma de l'antenne qu'il avait fabriquée et commercialisée (figure 3).

Dimensions de la HB9CV ou F8DR

Afin de satisfaire la curiosité de certains voici les dimensions de l'antenne:

<table>
<thead>
<tr>
<th>Bande</th>
<th>Dipôle</th>
<th>Réflecteur</th>
<th>Boom</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 m</td>
<td>9.50 m</td>
<td>10.60 m</td>
<td>2.65 m</td>
</tr>
<tr>
<td>17 m</td>
<td>7.90 m</td>
<td>8.69 m</td>
<td>2.07 m</td>
</tr>
<tr>
<td>15 m</td>
<td>6.77 m</td>
<td>6.89 m</td>
<td>1.77 m</td>
</tr>
<tr>
<td>12 m</td>
<td>5.83 m</td>
<td>6.42 m</td>
<td>1.53 m</td>
</tr>
<tr>
<td>10 m</td>
<td>4.78 m</td>
<td>5.20 m</td>
<td>1.31 m</td>
</tr>
</tbody>
</table>

Si cet article vous donne des idées, c'était son but... La radio reste encore un domaine, notamment la HF, ou le radioamateur a encore une place à tenir.

N° 710 AVRIL 1999